Details of each On Farm Trial conducted during the year 2020.

OFT-1

1	Title	Effect of Foliar Application of Boron on Fruit Set & Productivity of Apple
2	Problem Diagnose/defined	Poor Fruit Set
3	Details of technologies selected for assessment/refinement	Foliar Application of Boron at fruit development stages
4	Source of technology	SKUAST -K
5	Production system thematic area	Crop production
6	Thematic area	Crop Production
7	Performance of the Technology with performance indicators	Satisfactory
8	Final recommendation for micro level situation	Needs repeated trials
9	Constraints identified and feedback for research	Adoptability
10	Process of farmer's participation and their reaction	Satisfactory

Results of On Farm Trial

Crop/ enterprise	Farming situation	Problem Diagnosed	Title of OFT	No. of trials	Technology Assessed	Parameters of Assessment	Data on the Parameter	Results of assess ment	Feedback from the farmer
1	2	3	4	5	6	7	8	9	10
Apple	Rainfed/	Poor fruit	Effect of	03	Foliar	Fruit yield	-	Table	Satisfied
	irrigated	set	Foliar		application			below	
			Application		of Boron				
			of Boron on		at 03				
			Fruit Set &		stages.				
			Productivity						
			of Apple						

Table

Crop	Fruit Set %	Location A	Location B	Location C
Apple	T1	25.3	23.4	22.9
	T2	40.2	38.8	38.1

Crop	Fruit Retention %	Location A	Location B	Location C
Apple	T1	40.1	38.4	36.9
	T2	55.5	48.7	46.3

Crop	Fruit Drop %	Location A	Location B	Location C
Apple	T1	59.9	61.6	63.1
	T2	44.5	51.3	53.7

1	Title	Soil and Foliar Application of Potassium for Color Development.
2	Problem Diagnose/defined	Poor fruit color
3	Details of technologies selected for	Foliar Application of Potassium at fruit
	assessment/refinement	development stages
4	Source of technology	SKUAST-Kashmir
5	Production system thematic area	Crop production
6	Thematic area	Crop production
7	Performance of the Technology with	Satisfactory
	performance indicators	
8	Final recommendation for micro level	Needs repeated trials
	situation	Necus repeated mais
9	Constraints identified and feedback for	Adoptability
	research	Moptability
10	Process of farmer's participation and	Satisfactory
	their reaction	

Results of On Farm Trial

Crop/ enterprise	Farming situation	Problem Diagnosed	Title of OFT	No. of trials	Technology Assessed	Parameters of Assessment	Data on the Parameter	Results of assess ment	Feedback from the farmer
1	2	3	4	5	6	7	8	9	10
Apple	Rainfed/ irrigated	Poor fruit color	Soil and Foliar Application of Potassium for Color Development	03	Foliar Application of Potassium at 02 stages	Quality improvement & yield	-	Table below	Satisfied

Table 1: Fruit Color (%)

Crop	Treatments	Darbagh	Chatrihama	Ranbirgrah
Apple	T1	69	69	61
	T2	81	84	79

Table 2: Yield data (MT/ha)

Crop	Treatments	Darbagh	Chatrihama	Ranbirgrah
Apple	T1	12.2	12.0	12.4
	T2	15.3	15.5	15.7

1	Title	Supplementation of UMMB for Maximizing Production Potential in Dairy Cows
2	Problem Diagnose/defined	Nutrient deficiency, Low quality feed resources,
		Low production
3	Details of technologies selected for	T1- Farmers practice,
	assessment/refinement	T2- UMMB lick
4	Source of technology	SKUAST-K
5	Production system thematic area	Poultry Production
6	Thematic area	Backyard Poultry
7	Performance of the Technology with	Milk production, Milk composition, feed intake,
	performance indicators	body condition score
8	Final recommendation for micro	UMMB supplementation is recommended for
	level situation	enhancing production potential for cows.
9	Constraints identified and feedback	Poor quality, feed availability.
	for research	
10	Process of farmer's participation	Satisfactorily
	and their reaction	

Crop/ enterprise	Farming situation	Problem Diagnosed	Title of OFT	No. of trials	Technology Assessed	Parameters of Assessment	Data on the Parameter	Results of assess ment	Feedback from the farmer
1	2	3	4	5	6	7	8	9	10
Cattle	-	Nutrient deficiency, Low quality feed resources, Low production	Supplementation of UMMB for maximizing production potential in dairy cows	03	T1- Farmers practice, T2- UMMB lick	Milk production, Milk composition, feed intake, body condition score	Milk yield/day Milk fat, milk protein, milk SNF, and total solids	1.Milk production was increased 2. Feed intake or body condition score was improved. 3. Milk composition awaited	Farmers are satisfied.

1	Title	Socioeconomic upliftment of rural women through rearing of elite strains of backyard poultry.
2	Problem Diagnose/defined	Poor production
3	Details of technologies selected for assessment/refinement	 T1- Traditional practice of poultry rearing (desi birds) T2- elite strains of backyard poultry rearing (Keystone Golden birds)
4	Source of technology	SKUAST-K
5	Production system thematic area	Poultry Production
6	Thematic area	Backyard Poultry
7	Performance of the Technology with performance indicators	 Age at first egg Adult body weight Egg Production
8	Final recommendation for micro level situation	Elite strains of backyard poultry are ideal for upliftment of rural women.
9	Constraints identified and feedback for research	Low reproduction and less growth rate of desi birds.
10	Process of farmer's participation and their reaction	Learning by doing & seeing is believing

Crop/ enterprise	Farming situation	Problem Diagnosed	Title of OFT	No. of Technology trials Assessed		Parameters of Assessment	Data on the Parameter	Results of assess ment	Feedback from the farmer
1	2	3	4	5	6	7	8	9	10
Poultry	-	Poor production	Socio economic upliftment of farm women through rearing of elite strains of backyard poultry birds	05	T1- Traditional practice of poultry rearing (desi birds) T2- elite strains of backyard poultry rearing (Keystone Golden birds)	Age at first egg Adult body weight Egg Production	No of eggs per year	Increased body weight + Egg production is ongoing	Under process

1	Title	Effect of Different Rooting Media on rooting of different Ornamental Plants.
2	Problem Diagnose/defined	Poor rooting
3	Details of technologies selected for	T1- Soil (farmers practice)
	assessment/refinement	T2- Sand
4	Source of technology	SKUAST-K
5	Production system thematic area	Ornamental Nursery Production
6	Thematic area	Nursery Production
7	Performance of the Technology with	Rooting percentage
	performance indicators	
8	Final recommendation for micro	Sand is better media for rooting.
	level situation	
9	Constraints identified and feedback	Lack of know how.
	for research	
10	Process of farmer's participation	Satisfactorily
	and their reaction	

Results of On Farm Trial

Crop/ enterprise	Farming situation	Problem Diagnosed	Title of OFT	No. of trials	Technology Assessed	Parameters of Assessment	Data on the Parameter	Results of assess ment	Feedback from the farmer
1	2	3	4	5	6	7	8	9	10
Ornamental plants	Irrigated	Poor rooting	Effect of different rooting media on rooting of different ornamental plants	03	T1- Soil (farmers practice) T2- Sand	Rooting percentage	T1-50% rooting T2- 80% rooting	Medium sand improves rooting percentage by 30%	Satisfactory

Table:

Technology Assessed	Production per unit	Net Return in Rs/unit	BC Ratio
Different media for rooting	T1- 500	2500	1:2.5
	T2-800	5000	1:3.1

1	Title	OFT on Effect of Dis-budding Techniques on Bulb Production of Tulip
2	Problem Diagnose/defined	Low bulb production
3	Details of technologies selected for	T0= farmers practice (no dis-budding)
	assessment/refinement	T1= Dis-budding at green bud stage
		T2= Dis-budding at flower opening stage
4	Source of technology	SKUAST-K
5	Production system thematic area	Ornamental Nursery Production
6	Thematic area	Nursery Production
7	Performance of the Technology with	Bulb production
	performance indicators	
8	Final recommendation for micro	Under Process
	level situation	
9	Constraints identified and feedback	
	for research	
10	Process of farmer's participation	Learning by doing & seeing is believing
	and their reaction	

Crop/ enterprise	Farming situation	Problem Diagnosed	Title of OFT	No. of trials	Technology Assessed	Parameters of Assessment	Data on the Parameter	Results of assess ment	Feedback from the farmer
1	2	3	4	5	6	7	8	9	10
Ornamental plants	Irrigated	Low bulb production	Effect of dis- budding techniques on bulb production of tulip	03	T_0 = farmers practice (no dis-budding) T_1 = Dis- budding at green bud stage T_2 = Dis- budding at flower opening stage	Bulb production	No. of flowering bulbs/plant	Under process	Under process

1	Title	Solid Waste Management using waste Decomposers
	Problem Diagnose/defined	Soil, water/air pollution
3	Details of technologies selected for	Use OF waste decomposing bacteria (Shalimar
	assessment/refinement	microbes) for decomposing solid waste.
4	Source of technology	SKUAST- K
5	Production system thematic area	Production of Input at site
6	Thematic area	Composting
7	Performance of the Technology	
	with performance indicators	
8	Final recommendation for micro	Need repeated trials
	level situation	
9	Constraints identified and	No Constrains
	feedback for research	
10	Process of farmer's participation	Farmers were cooperative and got satisfied by the
	and their reaction	results

Crop/ enterprise	Farming situation	Problem Diagnosed	Title of OFT	No. of trials	Technology Assessed	Parameters of Assessment	Data on the Parameter	Results of assess ment	Feedback from the farmer
1	2	3	4	5	6	7	8	9	10
Waste Decomposing		 Solid, water and air pollution. Hazardous effects on crops. 	Solid Waste Management using waste Decomposers	04	Use of Shalimar microbes for solid waste management	1.Yield 2.Quality of Compost 3.Time taken for composting		ble low-	Satisfactory

Treatment	Quality of Compost										
	Recovery %	Color	N%	Р%	K%	Time taken for composting					
T1	50 %	Light brown	0.50 %	0.26	0.54	180 days					
(Farmers Practice)											
T2	More than 70%	Dark brown	1.26	0.64	0.82	60 to 90 days					
(Shalimar Microbes)											

1	Title	Efficiency of <i>Eisenia fetida</i> Earthworm Species for Vermicomposting
	Problem Diagnose/defined	Improper method of preparation of compost
3	Details of technologies selected for	Use of Eisenia fetida cold tolerant vermiculture for vermi- composting
	assessment/refinement	
4	Source of technology	SKUAST- K
5	Production system thematic area	Production of Input at site
6	Thematic area	Composting
7	Performance of the Technology	Preparation of the compost using earthworm
	with performance indicators	species Eisenia fetida works efficiently in breaking
	1	down and decaying natural remains and turning
		these scrapes into high quality compost.
8	Final recommendation for micro	In Kashmir composting should be done by using
	level situation	Eisenia fetida cold tolerant vermiculture for
		vermicomposting.
9	Constraints identified and	No Constrains
	feedback for research	
10	Process of farmer's participation	Learning by doing and seeing is believing
	and their reaction	

Crop/ enterprise	Farming situation	Problem Diagnosed	Title of OFT	No. of trials	Technology Assessed	Parameters of Assessment	Data on the Parameter	Results of assess ment	Feedback from the farmer
1	2	3	4	5	6	7	8	9	10
Vermicomposting	-	Improper method of preparation of compost	Efficiency of Eisenia fetida Earthworm Species for Vermicomposting	03	Use of <i>Eisenia</i> <i>fetida</i> cold tolerant vermiculture for vermin- composting	1.Yield 2. Quality of compost 3.Time taken Composting	-Table B	elow-	Satisfactory

Treatment							
	Recovery %	Color	N%	Р %	K%	Time taken for composting	
T1 (Farmers Practice)	50 %	Light brown	0.67	0.82	1.8	180 days	
T2 (Eisenia fetida)	More than 80 %	Dark brown to black	1.50	1.08	2.50	40 to 45 days	

1.	Title	Utilizing Dal Weed in Compost Preparation					
2.	Problem Diagnose/defined	Dal weed Menace					
3.	Details of technologies selected for assessment/refinement	Use OF waste decomposing bacteria (Shalimar microbes), molasses, bio fertilizers, lime and Trichoderma for decomposing Dal weed.					
4.	Source of technology	SKUAST- K					
5.	Production system thematic area	Production of Input at site					
6.	Thematic area	Composting					
7.	Performance of the Technology with performance indicators	Composting of Dal weed is a relevant scientific technology for the production of nutrient rich compost using locally available raw material such as Dal weed and FYM					
8.	Final recommendation for micro level situation	Need repeated trials					
9.	Constrains identified and feed back for research	Adoptability					
10.	Process of farmers participation and their reaction	Learning by doing and seeing is believing					

Crop/ enterprise	Farming situation	Problem Diagnosed	Title of OFT	No. of trials	Technology Assessed	Parameters of Assessment	Data on the Parameter	Results of assess ment	Feedback from the farmer
1	2	3	4	5	6	7	8	9	10
Composting		Dal weed Menace	Utilizing Dal Weed in Compost Preparation	02	Use OF waste decomposing bacteria (Shalimar microbes), molasses, bio fertilizers, lime and Trichoderma for decomposing Dal weed	1.Yield 2. Quality of compost 3.Time taken Composting	-Table B	elow-	Satisfactory

Treatment	Quality of Compost							
	Recovery % age	Color	N%	P %	K%	Time taken for composting		
T1 (Farmers Practice)	40 to 50 %	Light brown	0.38%	0.10%	0.15%	260 to 300 days		
T2 (Shalimar Microbes + biofertilizers + Trichoderma)	70 to 80 %	Brownish black	1.18%	0.30%	0.56%	90 to 120 days		

1.	Title	Integrated Nutrient Management in Kale in Dal Catchment areas				
2.	Problem Diagnose/defined	Eutrophication of fertilizers in Dal Lake which causes excess weed growth in Dal lake				
3.	Details of technologies selected for assessment/refinement	Integrated Nutrient Management (Inorganic fertilizers + vermicompost + biofertilizer)				
4.	Source of technology	SKUAST- K				
5.	Production system thematic area	Crop Production with reference to nutrient Management				
6.	Thematic area	Integrated Nutrient Management				
7.	Performance of the Technology with performance indicators	Increase in the yield				
8.	Final recommendation for micro level situation	Integrated nutrient Management				
9.	Constrains identified and feed back for research	No Constrains				
10.	Process of farmers participation and their reaction	Farmers were cooperative and got satisfied by the results				

Crop/ enterprise	Farming situation	Problem Diagnosed	Title of OFT	No. of trials	Technology Assessed	Parameters of Assessment	Data on the Parameter	Results of assess ment	Feedback from the farmer
1	2	3	4	5	6	7	8	9	10
Crop	Irrigated	Eutrophication	Integrated	02	INM	1.Yield	-Table B	elow-	Satisfactory
production	_	of fertilizers in	Nutrient		a. Inorganic	2. yield			-
_		Dal Lake	Management		fertilizers	attributing			
		which causes	in Kale in		b.	characters			
		excess weed	Dal		vermicompost				
		growth in Dal	Catchment		c. Biofertilizer				
		lake	areas						

Treatments	Plant Height (cm)	Plant Spread (cm)	No of leaves/plant	Leaf yield (q/ha)
T1	41.03	48.65	11.38	433.38
(Farmers Practice)				
T2	45.98	53.57	13.34	522.67
(Inorganic Fertilizer +				
Vermicompost +				
Biofertilizer)				